自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

AdamShan的博客

自动驾驶工程师,谷歌认证机器学习专家,兰州大学无人驾驶团队创始人,主攻深度学习,无人驾驶汽车方向。

  • 博客(3)
  • 资源 (10)
  • 收藏
  • 关注

原创 无人驾驶汽车系统入门(三)——无损卡尔曼滤波,目标追踪,C++

前面两篇文章我们了解了卡尔曼滤波以及扩展卡尔曼滤波在目标追踪的应用,我们在上一篇文章中还具体用Python实现了EKF,但是细心的同学会发现,EKF的效率确实很低,计算雅可比矩阵确实是一个很费时的操作,当问题(非线性的)一旦变得复杂,其计算量就变得十分不可控制。在此再向大家接受一种滤波——无损卡尔曼滤波(Unscented Kalman Filter, UKF)创作不易,转载请注明来源:ht

2017-10-26 21:37:15 23393 25

原创 无人驾驶汽车系统入门(二)——高级运动模型和扩展卡尔曼滤波

前言:上一篇文章的最后我们提到卡尔曼滤波存在着一个非常大的局限性——它仅能对线性的处理模型和测量模型进行精确的估计,在非线性的场景中并不能达到最优的估计效果。所以之前为了保证我们的处理模型是线性的,我们上一节中使用了恒定速度模型,然后将估计目标的加减速用处理噪声来表示,这一模型用来估算行人的状态其实已经足够了,但是在现实的驾驶环境中,我们不仅要估计行人,我们除了估计行人状态以外,我们还需要估计其他

2017-10-17 20:22:22 42027 50

原创 无人驾驶汽车系统入门(一)——卡尔曼滤波与目标追踪

前言:随着深度学习近几年来的突破性进展,无人驾驶汽车也在这些年开始不断向商用化推进。很显然,无人驾驶汽车已经不是遥不可及的“未来技术”了,未来10年必将成为一个巨大的市场。本系列博客将围绕当前使用的最先进的无人驾驶汽车相关技术,一步一步地带领大家学习并且掌握无人驾驶系统的每一个模块的理论基础和实现细节。由于无人驾驶汽车系统构成及其复杂,本系列博客仅讨论软件部分的内容,关于汽车,传感器和底层的硬件,不

2017-10-16 12:30:48 63706 42

目标追踪-雷达-激光雷达数据

用于扩展卡尔曼滤波算法测试的目标追踪-雷达-激光雷达数据,详情请见博客:http://blog.csdn.net/adamshan/article/details/78265754

2017-10-21

基于Frenet优化轨迹的无人车动作规划实例

基于Frenet优化轨迹的无人车动作规划实例,使用Python实现,主要为高速场景,具体参考博客:https://blog.csdn.net/AdamShan/article/details/80779615

2018-06-22

基于欧几里德聚类的障碍物检测ROS实现

使用PCL实现的欧几里德聚类ROS节点,配合地面过滤可实现较为理想的激光雷达障碍物检测,具体见博客链接:https://blog.csdn.net/AdamShan/article/details/83015570

2018-10-11

基于ray filter的雷达点云地面过滤ROS节点

基于ray filter的雷达点云地面过滤ROS节点,使用PCL实现,具体参考博客:https://blog.csdn.net/AdamShan/article/details/82901295

2018-09-29

基于YOLO神经网络的实时车辆检测代码

基于深度学习的实时车辆检测代码,详情见博客:http://blog.csdn.net/adamshan/article/details/79193775

2018-01-29

扩展卡尔曼滤波代码和数据

基于扩展卡尔曼滤波的车辆追踪项目,C++实现,CTRV模型,激光雷达和雷达传感器融合,详情见博客http://blog.csdn.net/adamshan/article/details/78359048

2017-10-26

基于视觉的车道线检测完整代码

基于视觉的曲线车道线检测完整代码,采用滑动窗口,详情见博客:http://blog.csdn.net/adamshan/article/details/78733302

2017-12-06

kaist02.pcd

KAIST区域的点云地图,使用SC-LEGO-LOAM方法构建,详情见博客:https://blog.csdn.net/AdamShan/article/details/106589633

2020-06-12

深度前馈网路的交通信号检测

基于深度前馈网络的交通信号识别完整代码,keras框架实现,详情见博客:http://blog.csdn.net/adamshan/article/details/79127573

2018-01-22

神经网络入门代码(见系列博客)

神经网络入门代码,keras实现,MNIST数据集识别,详情见博客:http://blog.csdn.net/adamshan/article/details/79004784

2018-01-08

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除