自动驾驶系统进阶与项目实战(四)自动驾驶高精度地图构建中的三维场景识别和闭环检测

自动驾驶系统进阶与项目实战(四)自动驾驶高精度地图构建中的三维场景识别和闭环检测

闭环检测(loop-closure detection)是SLAM中非常关键的一部分,当然也是自动驾驶高精度地图(HD Map)构建的核心技术之一,闭环检测即无人车能够识别出SLAM构图过程中形成的闭环,从而优化由观测(lidar slam、imu、车辆can、gnss等算出的里程计)累计的误差,使得SLAM地图在闭环的“缝合处”能够准确对接、在同一路段的重复测量(主要是激光点云、图像等)能够准确拟合。显然闭环检测对于大面积、大场景的地图构建非常必要。

在这里插入图片描述

在闭环检测中,场景识别是关键步骤之一,场景识别即无人车匹配当前场景和历史场景的过程,如果当前场景和历史中的某些场景吻合,那么无人车才知道自己“来过”这个地方,从而进行闭环的位姿优化,场景识别中最常见的就是基于图像的识别,但是基于图像的方法容易收到场景光照条件变化以及移动目标的影响。

基于点云的三维场景识别技术受光照、季节等环境条件的影响较小,和图像方法类似,在点云中也可以使用设计的描述符(descriptor)来定义三维模型用于场景识别,这类描述符的设计需要满足两个要求,第一是旋转不变性,同一场景不能因为视角的切换而表现为不同的描述符,第二是减少噪声的影响对于这类空间描述符的印象,点云数据密度相较于图像低很多,并且距离越大数据越稀疏,噪声的影响越大ÿ

AdamShan CSDN认证博客专家 图像处理 深度学习 TensorFlow
奔驰高级自动驾驶扫地僧,谷歌认证机器学习专家,兰州大学无人驾驶团队创始人,主攻深度学习,无人驾驶汽车方向,著有《无人驾驶原理与实践》一书。
已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页
实付 29.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值